Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2313313

RESUMEN

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Humanos , COVID-19/patología , COVID-19/virología , Interacciones Microbiota-Huesped , Gripe Humana/patología , Gripe Humana/virología , SARS-CoV-2 , Virus Sincitiales Respiratorios , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología
2.
Transplantation ; 105(5): 968-978, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2270893

RESUMEN

Influenza infection poses significant risk for solid organ transplant recipients who often experience more severe infection with increased rates of complications, including those relating to the allograft. Although symptoms of influenza experienced by transplant recipients are similar to that of the general population, fever is not a ubiquitous symptom and lymphopenia is common. Annual inactivated influenza vaccine is recommended for all transplant recipients. Newer strategies such as using a higher dose vaccine or multiple doses in the same season appear to provide greater immunogenicity. Neuraminidase inhibitors are the mainstay of treatment and chemoprophylaxis although resistance may occur in the transplant setting. Influenza therapeutics are advancing, including the recent licensure of baloxavir; however, many remain to be evaluated in transplant recipients and are not yet in routine clinical use. Further population-based studies spanning multiple influenza seasons are needed to enhance our understanding of influenza epidemiology in solid organ transplant recipients. Specific assessment of newer influenza therapeutics in transplant recipients and refinement of prevention strategies are vital to reducing morbidity and mortality.


Asunto(s)
Antivirales/administración & dosificación , Rechazo de Injerto/prevención & control , Inmunosupresores/uso terapéutico , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Trasplante de Órganos , Antivirales/efectos adversos , Rechazo de Injerto/inmunología , Rechazo de Injerto/mortalidad , Supervivencia de Injerto/efectos de los fármacos , Humanos , Huésped Inmunocomprometido , Inmunogenicidad Vacunal , Inmunosupresores/efectos adversos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/inmunología , Gripe Humana/mortalidad , Gripe Humana/virología , Trasplante de Órganos/efectos adversos , Trasplante de Órganos/mortalidad , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento , Vacunación
4.
Curr Opin Immunol ; 78: 102252, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2269277

RESUMEN

The outbreak of the COVID-19 pandemic one year after the centennial of the 1918 influenza pandemic reaffirms the catastrophic impact respiratory viruses can have on global health and economy. A key feature of SARS-CoV-2 and influenza A viruses (IAV) is their remarkable ability to suppress or dysregulate human immune responses. Here, we summarize the growing knowledge about the interplay of SARS-CoV-2 and antiviral innate immunity, with an emphasis on the regulation of type-I or -III interferon responses that are critically implicated in COVID-19 pathogenesis. Furthermore, we draw parallels to IAV infection and discuss shared innate immune sensing mechanisms and the respective viral countermeasures.


Asunto(s)
COVID-19 , Gripe Humana , Interferones , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , Inmunidad Innata , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Interferones/inmunología , Pandemias , SARS-CoV-2/inmunología
7.
J Virol ; 96(15): e0076522, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1992938

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) represent two highly transmissible airborne pathogens with pandemic capabilities. Although these viruses belong to separate virus families-SARS-CoV-2 is a member of the family Coronaviridae, while IAV is a member of the family Orthomyxoviridae-both have shown zoonotic potential, with significant animal reservoirs in species in close contact with humans. The two viruses are similar in their capacity to infect human airways, and coinfections resulting in significant morbidity and mortality have been documented. Here, we investigate the interaction between SARS-CoV-2 USA-WA1/2020 and influenza H1N1 A/California/04/2009 virus during coinfection. Competition assays in vitro were performed in susceptible cells that were either interferon type I/III (IFN-I/-III) nonresponsive or IFN-I/-III responsive, in addition to an in vivo golden hamster model. We find that SARS-CoV-2 infection does not interfere with IAV biology in vivo, regardless of timing between the infections. In contrast, we observe a significant loss of SARS-CoV-2 replication following IAV infection. The latter phenotype correlates with increased levels of IFN-I/-III and immune priming that interferes with the kinetics of SARS-CoV-2 replication. Together, these data suggest that cocirculation of SARS-CoV-2 and IAV is unlikely to result in increased severity of disease. IMPORTANCE The human population now has two circulating respiratory RNA viruses with high pandemic potential, namely, SARS-CoV-2 and influenza A virus. As both viruses infect the airways and can result in significant morbidity and mortality, it is imperative that we also understand the consequences of getting coinfected. Here, we demonstrate that the host response to influenza A virus uniquely interferes with SARS-CoV-2 biology although the inverse relationship is not evident. Overall, we find that the host response to both viruses is comparable to that to SARS-CoV-2 infection alone.


Asunto(s)
COVID-19 , Coinfección , Reactividad Cruzada , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , SARS-CoV-2 , Replicación Viral , Animales , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Coinfección/inmunología , Coinfección/virología , Reactividad Cruzada/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Interferones/inmunología , Mesocricetus/inmunología , Mesocricetus/virología , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Replicación Viral/inmunología
8.
PLoS One ; 17(7): e0270814, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1919122

RESUMEN

INTRODUCTION: Influenza A virus infection is a contagious acute respiratory infection which mostly evolves in an epidemic form, less frequently as pandemic outbreaks. It can take a severe clinical form that needs to be managed in intensive care unit (ICU). The aim of this study was to describe the epidemiological and clinical aspects of influenza A, then to determine independent predictive factors of ICU mortality in Abderrahmen Mami hospital, Ariana, Tunisia. METHODS: It was a single-center study, including all hospitalized patients in intensive care, between November 1st, 2009 and October 31st, 2019, with influenza A virus infection. We recorded demographic, clinical and biological data, evolving features; then multivariate analysis of the predictive factors of ICU mortality was realized. RESULTS: During the study period (10 consecutive seasons), 120 patients having severe Influenza A were admitted (Proportion = 2.5%) from all hospitalized patients, with a median age of 48 years and a gender-ratio of 1.14. Among women, 14 were pregnant. Only 7 patients (5.8%) have had seasonal flu vaccine during the year before ICU admission. The median values of the Simplified Acute Physiology Score II, Acute Physiologic and Chronic Health Evaluation II and Sepsis-related Organ Failure Assessment were respectively 26, 10 and 3. Virus strains identified with polymerase chain reaction were H1N1 pdm09 (84.2%) and H3N2 (15.8%). Antiviral therapy was prescribed in 88 (73.3%) patients. A co-infection was recorded in 19 cases: bacterial (n = 17) and aspergillaire (n = 2). An acute respiratory distress syndrome (ARDS) was diagnosed in 82 patients. Non-invasive ventilation (NIV) was conducted for 72 (60%) patients with success in 34 cases. Endotracheal intubation was performed in 59 patients with median duration of invasive mechanical ventilation 8 [3.25-13] days. The most frequent complications were acute kidney injury (n = 50, 41.7%), shock (n = 48, 40%), hospital-acquired infections (n = 46, 38.8%) and thromboembolic events (n = 19, 15.8%). The overall ICU mortality rate was of 31.7% (deceased n = 38). Independent predictive factors of ICU mortality identified were: age above 56 years (OR = 7.417; IC95% [1.474-37.317]; p = 0.015), PaO2/FiO2 ≤ 95 mmHg (OR = 9.078; IC95% [1.636-50.363]; p = 0.012) and lymphocytes count ≤ 1.325 109/L (OR = 10.199; IC95% [1.550-67.101]; p = 0.016). CONCLUSION: Influenza A in ICU is not uncommon, even in A(H1N1) dominant seasons; its management is highly demanding. It is responsible for considerable morbi-mortality especially in elderly patients.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Anciano , Femenino , Mortalidad Hospitalaria , Humanos , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Gripe Humana/terapia , Gripe Humana/virología , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Ventilación no Invasiva , Gravedad del Paciente , Embarazo , Factores de Riesgo , Túnez/epidemiología
9.
Int J Infect Dis ; 121: 195-202, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1851259

RESUMEN

OBJECTIVES: Because of the spread of the Omicron variant, many countries have experienced COVID-19 case numbers unseen since the start of the pandemic. We aimed to compare the epidemiological characteristics of Omicron with previous variants and different strains of influenza to provide context for public health responses. METHODS: We developed transmission models for SARS-CoV-2 variants and influenza, in which transmission, death, and vaccination rates were taken to be time-varying. We fit our model based on publicly available data in South Africa, the United States, and Canada. We used this model to evaluate the relative transmissibility and mortality of Omicron compared with previous variants and influenza. RESULTS: We found that Omicron is more transmissible and less fatal than both seasonal and 2009 H1N1 influenza and the Delta variant; these characteristics make Omicron epidemiologically more similar to influenza than it is to Delta. We estimate that as of February 7, 2022, booster doses have prevented 4.29×107 and 1.14×106 Omicron infections in the United States and Canada, respectively. CONCLUSION: Our findings indicate that the high infectivity of Omicron will keep COVID-19 endemic, similar to influenza. However, because of Omicron's lower fatality rate, our work suggests that human populations living with SARS-CoV-2 are most likely.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Mutación , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/prevención & control , Gripe Humana/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología
10.
PLoS One ; 17(1): e0262258, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1841144

RESUMEN

Although patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, influenza B and respiratory syncytial virus (RSV) show comparable or very similar manifestations, the therapeutic approaches of these respiratory viral infections are different, which requires an accurate diagnosis. Recently, the novel multiplex real-time reverse transcription-polymerase chain reaction assay AMPLIQUICK® Respiratory Triplex (BioSynex SA, Illkirch-Graffenstaden, France) allows simultaneous detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory tract samples. We herein evaluated the performance of the AMPLIQUICK® Respiratory Triplex for the detection of the four viruses in respiratory specimens, using Allplex™ Respiratory Panel 1 and 2019-nCoV assays (Seegene, Seoul, Korea) as reference comparator assays. A total of 359 archived predetermined respiratory samples, including 83, 145, 19 and 95 positive specimens for SARS-CoV-2, influenza A, influenza B and RSV respectively, were included. The AMPLIQUICK® Respiratory Triplex showed high concordance with the reference assays, with an overall agreement for SARS-CoV-2, influenza A, influenza B, and RSV at 97.6%, 98.8%, 98.3% and 100.0%, respectively, and high κ values ranging from 0.93 to 1.00, indicating an almost perfect agreement between assays. Furthermore, high correlations of cycle threshold (Ct) values were observed for positive samples of the four viruses between the AMPLIQUICK® Respiratory Triplex and comparator assays, with an overall high agreement between Ct values assessed by Bland-Altman analyses. In conclusion, these observations demonstrate that the multiplex AMPLIQUICK® Respiratory Triplex is a reliable assay for the qualitative detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory specimens, which may prove useful for streamlining diagnostics during the winter influenza-seasons.


Asunto(s)
COVID-19/diagnóstico , Gripe Humana/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones por Virus Sincitial Respiratorio/diagnóstico , COVID-19/virología , Humanos , Gripe Humana/virología , Técnicas de Diagnóstico Molecular , Nasofaringe/virología , Infecciones por Virus Sincitial Respiratorio/virología , Estudios Retrospectivos , Sensibilidad y Especificidad
12.
Pediatr Infect Dis J ; 41(4): e146-e148, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1706949

RESUMEN

Respiratory viruses were detected by multiplex-polymerase chain reaction from oropharyngeal swabs in 114/168 (67.9%) children with acute respiratory infection presenting to 5 pediatric practices in Germany between November 2020 and April 2021. In contrast to rhino- (48.8%), adeno- (14.3%) and endemic coronaviruses (14.9%), SARS-CoV-2 and influenza virus were detected only once; respiratory syncytial virus was not detected. This demonstrates differing impacts of pandemic infection control measures on the spread of respiratory viruses.


Asunto(s)
Atención Primaria de Salud , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/etiología , Virosis/epidemiología , Virosis/etiología , Adolescente , COVID-19/epidemiología , COVID-19/virología , Niño , Preescolar , Susceptibilidad a Enfermedades , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Gripe Humana/epidemiología , Gripe Humana/virología , Masculino , Pandemias , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/terapia , SARS-CoV-2 , Virosis/diagnóstico , Virosis/terapia
13.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1700574

RESUMEN

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Conformación de Ácido Nucleico , ARN Viral/química , Animales , Secuencia de Bases , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Motivos de Nucleótidos/genética , Pliegue del ARN , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
J Virol ; 95(24): e0117421, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1691429

RESUMEN

Defective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that have an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon coinfection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease. To select corresponding candidates, we studied de novo generation of DIPs and propagation competition between different defective interfering (DI) vRNAs in an STV coinfection scenario in cell culture. A small-scale two-stage cultivation system that allows long-term semi-continuous propagation of IAV and its DIPs was used. Strong periodic oscillations in virus titers were observed due to the dynamic interaction of DIPs and STVs. Using next-generation sequencing, we detected a predominant formation and accumulation of DI vRNAs on the polymerase-encoding segments. Short DI vRNAs accumulated to higher fractions than longer ones, indicating a replication advantage, yet an optimum fragment length was observed. Some DI vRNAs showed breaking points in a specific part of their bundling signal (belonging to the packaging signal), suggesting its dispensability for DI vRNA propagation. Over a total cultivation time of 21 days, several individual DI vRNAs accumulated to high fractions, while others decreased. Using reverse genetics for IAV, purely clonal DIPs derived from highly replicating DI vRNAs were generated. We confirm that these DIPs exhibit a superior in vitro interfering efficacy compared to DIPs derived from lowly accumulated DI vRNAs and suggest promising candidates for efficacious antiviral treatment. IMPORTANCE Defective interfering particles (DIPs) emerge naturally during viral infection and typically show an internal deletion in the viral genome. Thus, DIPs are propagation-incompetent. Previous research suggests DIPs as potent antiviral compounds for many different virus families due to their ability to interfere with virus replication by competitive inhibition. For instance, the administration of influenza A virus (IAV) DIPs resulted in a rescue of mice from an otherwise lethal IAV dose. Moreover, no apparent toxic effects were observed when only DIPs were administered to mice and ferrets. IAV DIPs show antiviral activity against many different IAV strains, including pandemic and highly pathogenic avian strains, and even against nonhomologous viruses, such as SARS-CoV-2, by stimulation of innate immunity. Here, we used a cultivation/infection system, which exerted selection pressure toward accumulation of highly competitive IAV DIPs. These DIPs showed a superior interfering efficacy in vitro, and we suggest them for effective antiviral therapy.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos/métodos , Virus de la Influenza A , Gripe Humana/virología , ARN Viral , Animales , Técnicas de Cultivo de Célula , Línea Celular , Virus Interferentes Defectuosos , Virus Defectuosos/genética , Perros , Eliminación de Gen , Genoma Viral , Humanos , Inmunidad Innata/efectos de los fármacos , Células de Riñón Canino Madin Darby , Oscilometría , Reacción en Cadena en Tiempo Real de la Polimerasa , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
J Med Virol ; 93(8): 4748-4755, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1610624

RESUMEN

Respiratory infections are one of the most frequent reasons for medical consultations in children. In low resource settings such as in Lao People's Democratic Republic, knowledge gaps and the dearth of laboratory capacity to support differential diagnosis may contribute to antibiotic overuse. We studied the etiology, temporal trends, and genetic diversity of viral respiratory infections in children to provide evidence for prevention and treatment guidelines. From September 2014 to October 2015, throat swabs and nasopharyngeal aspirates from 445 children under 10 years old with symptoms of acute respiratory infection were collected at the Children Hospital in Vientiane. Rapid antigen tests were performed for influenza A and B and respiratory syncytial virus. Real-time reverse-transcription polymerase chain reactions (RT-PCRs) were performed to detect 16 viruses. Influenza infections were detected with a higher sensitivity using PCR than with the rapid antigen test. By RT-PCR screening, at least one pathogen could be identified for 71.7% of cases. Human rhinoviruses were most frequently detected (29.9%), followed by influenza A and B viruses combined (15.9%). We identify and discuss the seasonality of some of the infections. Altogether these data provide a detailed characterization of respiratory pathogens in Lao children and we provide recommendations for vaccination and further studies.


Asunto(s)
Coinfección/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Virosis/epidemiología , Virus/genética , Enfermedad Aguda/epidemiología , Niño , Preescolar , Coinfección/virología , Femenino , Humanos , Lactante , Recién Nacido , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/virología , Laos/epidemiología , Masculino , Prevalencia , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones del Sistema Respiratorio/virología , Virus/clasificación , Virus/aislamiento & purificación
17.
Cells ; 11(3)2022 01 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1667057

RESUMEN

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inmunidad/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , ARN/inmunología , Transcriptoma/inmunología , Células A549 , Animales , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/genética , Gripe Humana/virología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 1 Regulador del Interferón/metabolismo , MicroARNs/genética , MicroARNs/inmunología , MicroARNs/metabolismo , Pandemias/prevención & control , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , RNA-Seq/métodos , SARS-CoV-2/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma/genética
19.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1650891

RESUMEN

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga Viral
20.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1639142

RESUMEN

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Vacunas contra la COVID-19/metabolismo , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Sitios de Unión , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Expresión Génica , Humanos , Sueros Inmunes/química , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/metabolismo , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Pseudotipado Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA